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Modelling 
Machine learning

Tony Ward  
provides an 

algorithmic framework 
for building generalised 
linear models using the 

field of machine learning

JUDGMENT 
DAY FOR 
PRICING

“Three billion human lives ended on August 
29th, 1997. The survivors of the nuclear fire 
called the war ‘Judgment Day’. They lived only 
to face a new nightmare, the war against  
the machines.”

In the Terminator film franchise, an 
artificial intelligence system designed to 
protect the US seizes control of the world  
and launches a global war of extermination 
against humanity. For the moment, 
thankfully, this is just science fiction – though 
it is understandable why, when we hear the 
term ‘machine learning’, that we immediately 
think of Arnold Schwarzenegger.

Machine learning is, in fact, a bonafide 
academic field of study. It is a subfield of 
computer science, and focuses on the 

development of computer 
programmes, or algorithms, that 
can teach themselves to learn or 
grow when exposed to new data. 

It is a relatively new field, but 
has rapidly gained in 
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popularity, with applications including:  
spam detection, speech recognition, 
recommendation algorithms, such as those 
used by Amazon, and autonomous driving cars. 

Algorithmic pricing
In the 1990s, British actuaries introduced 
generalised linear models (GLMs) as tools for 
analysing insurance data. GLMs have now 
become the default method for modelling 
claims costs, and are also widely used in 
renewal, conversion and lapse modelling. 

This article presents an algorithmic 
framework for building GLMs, using Lasso 
(least absolute shrinkage and selection 
operator) regression – a predictive modelling 
technique taken from the machine learning 
community. The framework retains the familiar 
components of a GLM (linear predictor, link 
function, error term), but allows us to fit models 
in an automated way. This allows us to test 
unstructured text data such as underwriter 
notes or social media activity in our pricing 
models. All code and data used here have been 
made freely available at www.statcore.co.uk.

Motivating example: 
salary prediction
TheActuaryJobs.com is the official job board  
for the actuarial profession. At the time of 
writing, there were 757 live jobs listed, covering 
a wide range of experience levels, sectors and 
locations. Fortunately, the structure of the 
website meant that it was relatively 
straightforward to scrape all 27,786 historic  
job advertisements. Each advert contains 
information relating to the position, such as: 
www.theactuaryjobs.com/job/39181

Our goal is to use the information provided 
in the job description to predict the probability 
that a given job advertisement pays more than 
£70,000. The information in the advert is a 
mixture of structured and unstructured text 
data, and we would like to test both data types 
in our model. 

The first step is to convert the unstructured 
text into a document term matrix – a tabular 
form with columns indicating the presence or 
absence of words. In The Actuary, May 2011, 
my colleague, Alan Chalk and I, presented a 

demonstration of this technique on a 
commercial lines claims dataset, to extract 
information from the loss adjustor notes (see 
Table 1, above). Once we apply this technique 
to the ‘job title’ and ‘further info’ variables, we 
obtain a modelling dataset with the following 
dimensions (see Table 2, below).

 

Model complexity:  
Man vs machine
During the modelling phase, we must decide 
on an appropriate degree of model complexity. 
How many variables should we include in the 
model? When we include categorical variables, 
should we group any levels with each other? 
Should we fit a curve to our numeric variables? 
If so, what should that curve look like?

Typically, these decisions are taken by an 
actuary, who uses statistical and consistency 
tests together with common sense and 
experience to arrive at a final model. However, 
this approach simply does not scale very well.

As the number of candidate rating factors 
increases, the number of potential models 
increases exponentially. This leads to much 
longer model build-times, and an increased 
risk of finding a sub-optimal model. 

Testing unstructured data presents a new 
challenge. Since the number of parameters being 
estimated often runs into the thousands, we need 
an alternative approach to determine model 
complexity. That approach is regularisation.

Regularisation and the lasso
When we fit a GLM, the model parameters are 
calculated by maximum likelihood estimation. 
In practice, we minimise the negative of the  
log likelihood, which is equivalent.

Where β0 is the intercept term, β is the vector of 
model relatives and l(β |X,Y) is the log likelihood. 

The main idea behind regularisation is to 
penalise complex models. This is achieved by 
defining a penalty function to quantify the 
complexity of the model – more complex 
models will have a greater penalty associated 
with them. Since the process of fitting a GLM 
can be considered an optimisation problem 
where a loss function is minimised, we can add 
the penalty term and minimise the whole 
expression together. Lasso regression shrinks 
the regression coefficients by imposing a L1 
norm penalty on their size.

Models are estimated by penalised maximum 
likelihood,
 

where l(β|X,Y) is the log likelihood defined 
previously and λ ≥ 0 is a complexity parameter 
that controls the amount of shrinkage in the 
parameter estimates: the larger the value of λ, 
the greater the amount of shrinkage, which 
means smaller parameter estimates. Notice that, 
since β0 is not present in the penalty function, 
the intercept term is left unconstrained. The 
optimal λ is estimated from the training data 
using k-fold cross validation.

It turns out that making t sufficiently small 
will cause some coefficients to be exactly zero. 
So lasso regression performs automatic model 
selection. It scales well to wide datasets, owing 
to an optimisation technique called co-ordinate 
descent, which optimises one model parameter 
at a time. This allows linear models with 
arbitrary size p to be fitted, and is why lasso 
regression is so popular in applications such as 
genomics, where, for example, p = 40k genes are 
measured for N = 100 subjects.

Application: salary prediction
Recall that our goal is to use the information 
provided in the job description to predict the 
probability that a given job advertisement pays 
more than £70,000. We set this up as a GLM 
with binomial error distribution, and fitted both 
a lasso regression and a traditional GLM using 
two rating factors – experience and sector. 

The model parameters shown are on the  
linear predictor scale – a value of 0 means no 
effect and a positive value means a relatively 
high probability (see Figure 1).

The red line shows the model parameters for 
the GLM model. The confidence interval for hedge 
funds (not shown) indicates that this parameter 
estimate is not significantly different from zero. 
We now have a choice – do we leave that 
parameter estimate ungrouped, or should we 
group it with another factor level? These 
decisions are harder when you have limited prior 
knowledge about the expected relationship.

Lasso regression takes these difficult 
decisions away from the actuary by 
automatically deciding which rating factors 
appear in the model, and which levels should be 
non-zero. The lasso regression (blue line) has set 
several levels to zero, and has shrunk the 
remaining parameter estimates towards zero, 
especially in areas of low exposure. 

Our benchmark tests (statcore.co.uk/
case-studies/algorithmic-pricing/) show lasso 
regression outperforms the traditional approach 
to fitting GLM models, especially where we have 
limited prior information on the expected 
relationship – for example, with geographic or 
vehicle group data.

Continuing with our modelling problem, 
we split the data randomly into training and 
hold out portions. Using the training data, 
we use lasso regression to fit several candidate 
models using combinations of the input 
variables. For example, model ESCICOJF 
contains variables ‘experience’, ‘sector’, ‘city’, 
‘county’, ‘job title’ and ‘further info’. These 
models are then used to make predictions on 
the hold out data, and are assessed based on 
their deviance (see Figure 2).

ESCICOJ has the lowest deviance and is 
therefore selected as the final model. Note that 
this model includes the unstructured text field 
‘job description’. To provide insight into how 
this increased predictive accuracy, we compare 
models with (ESCICOJ) and without (ESCICO) 
this variable, focusing on the highest 
predictions (see Figure 3).

Words such as ‘partner’, ‘director’ ‘head’ and 
‘chief’ all indicate seniority, and words ‘expert’, 
‘stochastic’ ‘remetrica’ and ‘esg’ indicate a niche 
specialism, which is why these adverts receive 
very high predictions.

We have presented a new framework for 
building GLM models in an automated way, 
using lasso regression, one of many powerful 
machine learning algorithms. Leo Breiman, the 
statistician and inventor of the Random Forest 
algorithm, said: “If our goal as a field is to use 
data to solve problems, then we need to move 
away from exclusive dependence on data 
models and adopt a more diverse set of tools.” a

Thanks to Redactive Media for permission to  
use data from TheActuaryJobs.com

Figure 2: Hold out performance: deviance

Figure 1: Model parameters: lasso regression vs GLM

Figure 3: Predicted values: job description

“Generalised linear models have become the default 
modelling method for claims costs, and are also widely 
used in renewal, conversion and lapse modelling”

Table 1:  Document term matrix for commercial lines claim data

 Damage Impact Shop Water

Impact damage to shop canopy – TP unknown 1 1 1 0

Water leak from bath 0 0 0 1

Impact damage 1 1 0 0

Leakage of water on laminate floor 0 0 0 1

Table 2:  Modelling dataset

 Rating factor Levels 

Experience 7

Sector 14

Country 89

City 99

Job title 189

Further info 691
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